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COMMENT 

Boolean functions and finite difference eigenvalues 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 7 April 1988 

Abstract. Finite difference calculations involving the expectation values of Boolean func- 
tions are shown to yield detailed information about the properties of the energy levels and 
eigenfunctions for double-well potentials. 

1. Introduction 

In a recent letter Diaz et a1 (1988) described a finite difference method of numerical 
integration for the Schrodinger equation 

- a D 2 + +  VI//=& (1) 

which involves the computation of two linearly independent solutions A(x)  and B ( x ) .  
They state that the new method is required because the more simple finite difference 
method of Killingbeck (1985a) is not applicable to potentials V ( x )  of mixed parity. 
We wish to point out in this work that the simple method is nor thus limited; it works 
just as easily for the potentials treated by Diaz er a1 (1988) as it does for potentials 
of even parity. The introduction of a different (two-variable) method for mixed parity 
potentials is thus unnecessary. 

The test potentials used by Diaz et a1 (1988) came from the work of Somorjai and 
Hornig (1962), who used double-minimum model potentials to describe proton motion 
in hydrogen bonds. Somorjai and Hornig (1962) discussed various resonance 
phenomena caused by coupling between the left- and right-well states in a double-well 
potential. They calculated the energy levels by using a 20 x 20 secular matrix in a basis 
of harmonic oscillator functions centred on x = 0. Comparison of the works of Diaz 
et a1 (1988) and Somorjai and Hornig (1962) shows that the former authors used units 
for which (Y = 2 in equation ( l ) ,  although this unconventional choice was not clear 
from their discussion. For purposes of comparison we use the same choice in our 
numerical tables, which illustrate how the use of Boolean functions in a finite difference 
approach can reveal information which is not easily obtainable by the matrix diagonali- 
sation approach of Somorjai and Hornig (1962). The methods which we describe are 
readily applicable on modern microcomputers, which can handle both Boolean and 
mathematical functions. Our convention in the present work is 

True = 1; False = 0 

and readers will easily make the appropriate modifications for computers which use 
a value of -1 to represent True. 

(2) 
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Section 2 describes briefly the calculational algorithm, which involves only a slight 
modification of that described by Killingbeck (1985b). Section 3 explains the novel 
use of Boolean functions to calculate some relevant quantities. Section 4 gives some 
illustrative numerical results which indicate the value of the technique for exploring 
various subtle aspects of the theory of double-well potentials, and also reports the 
result of an interesting calculation using perturbation theory. 

2. The finite difference calculation 

The way in which a finite difference calculation can yield an eigenvalue of a potential 
V ( x )  together with the expectation value of any selected function U ( x )  has been 
explained in detail by Killingbeck (1985b), and so we recapitulate here only the main 
details of the method. Taking the most simple finite difference representation of D2+ 
in the Schrodinger equation (1) yields the familiar three-point recurrence relation 

$ ( x  - h )  = F(x)rCl(x) - $ ( x +  h )  (3) 
where 

F ( x )  = 2 +  q5 +&Kq5’ 

q 5 ( ~ )  = a - ’ h 2 (  V ( X )  - E )  

h being the finite difference step length. The choice K = 0 in (4) gives the traditional 
( hZ  error) method, while the choice K = 1 gives the more accurate ( h4 error) method 
of Killingbeck (1985b). 

The method of Killingbeck (1985b) hinges on the differentiation of equation (3) 
with respect to E and also with respect to A, with the potential V ( x )  in (1) being 
regarded as having a dummy term A U ( x )  added to it. Denoting the appropriate 
derivatives of $ by (LE and + A ,  we obtain the recurrence relations 

+ E ( x -  h )  = F ( x ) $ E ( x )  - $ E ( x -  G ( x ) $ ( x )  (6) 

$ A ( x -  h )  = F ( x ) $ A ( x )  - $ A ( x -  h )  + G ( x )  U ( X ) $ ( X )  (7 )  
where 

G(x)  = a - ’ h 2 ( l + b K 4 ( x ) ) .  

To use equations (3) ,  ( 6 )  and (7)  to solve equation (1) with the boundary conditions 
$ ( x 2 )  = $ ( x , )  = 0 (with x ,  < x, )  we set $ ( x 2 )  = 0, $ ( x z -  h )  = h, with all $E and zero, 
and use the recurrence relations to calculate the three $ functions for decreasing x 
down to x , .  Some trial E value has to be used to start the calculation, but at the end 
of the run it is revised by the Newton method formula 

E ’ =  E - + ( x I ) / $ E ( x I )  (9) 

(U= - $ * ( x I ) / $ € ( x , ) .  (10) 
If the Neumann (zero-gradient) boundary condition is to be obeyed at x 1  then the 

quantity $ ( x l  + h )  - $ ( x l  - h )  (and its corresponding partners) replaces $ ( x l )  in (9) 
and (10). To treat an even parity potential with x2 = L, x 1  = 0 we can use a Neumann 
condition at x I  = 0 to pick out the even parity states. We could also use a Dirichlet 
condition with x 1  = -L ,  and then the method still works even if the potential is not 

while the expectation value of U is given by the formula 



Boolean functions and Jinite diference eigenvalues 3401 

symmetric about x = 0. The only requirement is that the bound state amplitude shall 
be negligible outside the region L > x > - L, in which case we find that both Dirichlet 
and Neumann boundary conditions at x, give the same results. An asymmetric potential 
is thus handled by adjusting x, and does not need the separate technique described 
by Diaz et a1 (1988). 

3. The use of Boolean functions 

For double-well problems of the type studied by Somorjai and Hornig (1962) it would 
be useful to have values for numerical quantities such as $’(O) and the ‘left-hand 
probability’ 

P = $‘(x) dx. (11) 

We have carried out theoretical analysis and computer experiments to find the 
appropriate functions U ( x )  to use in the formalism of 5 3. The appropriate functions 
simulate a Dirac delta function and a Heaviside function, respectively, and can be 
described as follows. I / J~(O)  is the expectation value of the function 

a t x = O  
for x Z 0 

U(x) = 

while P is the expectation value of the function 
x S - h  

If the interval - L < x < L contains N strips of length h, with a running index M which 
goes from N -  1 to 0 to traverse the interval (so that x = x , + M h )  then the functions 
of equations (12) and (13) take the simple Boolean forms (with N2  = N/2)  

( M  = N2)/h (14) 

( M s N 2 - 1 ) + ( M = N 2 ) / 2 .  (15) 
Computational tests using these functions with the K = 1 method of 9 3 revealed that 
the values of E and $’(O) both have errors of h 4  type for small h, while the value of 
P has an error of h 2  type. Given these facts it is easy to obtain highly accurate results 
for all the cases treated by Diaz et a1 (1988) by using N = 50 and N = 100 with one 
stage of Richardson extrapolation (Killingbeck 1985a). For the test potential V ( x )  = x2, 
with L = 5 and N = 50 and 100, we obtained $’(O) = 0.564 1896, which agrees with the 
analytical result to the accuracy quoted. 

and 

4. Some double-well calculations 

We take as our test case the Schrodinger equation 

- ~ D ’ J I + ( ~ x ~ + ~ x ~ - ~ ~ x ~ ) J I  = E$ (16) 
which was studied at p = 1 by both Diaz er a1 (1988) and Somorjai and Hornig (1962). 
We found that varying p gives rise to some interesting effects. Table 1 shows our 
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Table 1. Results for the two lowest energy levels of the Schrodinger equation (16), with 
x, = -5, x2 = 5, using 50 and 100 strips in the finite difference method. 

p = o  p = 0.001 p = 0.002 

-17.342 211 
0.500 001 
0.001 503 

-17.324905 
0.500 000 
0 

-17.324 905 
-17.324 905 

-17.344 155 
0.788 548 
0.001 364 

-17.322 963 
0.21 1 453 
0.000 130 

-17.331 038 
-17.318 773 

-17.348 546 
0.908 103 
0.001 183 

-17.318 578 
0.091 899 
0.000 320 

-17.337 174 
-17.312643 

calculated results for p values near zero, while table 2 shows our results for some 
larger p values. The quantities EL and ER are energy levels computed with the 
(xl, x2) pairs ( - 5 , O )  and (0, 5 )  respectively, so that the actual energies for (x, , x2) = 
( - 5 , 5 )  indicate the effect of removing a barrier at x = 0 to allow tunnelling to take 
place between left and right wells. 

In a simple 2 x 2 matrix approach to the calculation of the energy levels for small 
p (table 1) we could take the even parity and odd parity states at p = 0 as basis states, 
with px3 as the off-diagonal perturbation. A simple calculation shows that such a 
model would predict an energy splitting 

A =  [(0.017 306)2+4p2M2]”2 (17)  
where M is the matrix element of x3 between the basis functions. Our finite difference 
results for small p fit very accurately to the formula (17) with M = 6.1 16. The values 
of P and p2(0)  in table 1 show how the ground state, which arises from the even parity 
state, becomes localised in the deeper left well as p increases from zero. 

Table 2 shows the lowest three levels, since in the vicinity of p = 1.13 the lowest 
level in the right well shows a resonance effect with the second level in the left well. 

Table 2. Results for the first three energy levels in the neighbourhood of p = 1.13, with 
the same parameters as for table 1. 

p = 1.00 p =  1.10 p = 1.15 

E -24.517 598 -25.367 009 -25.801 690 
P 0.999 989 0.999 992 0.999 993 
* 2 ( 0 )  0.000 073 0.000 056 0.000 049 

E -12.091 375 - 1 1.660 074 - 11.684 748 
P 0.002 571 0.027 179 0.947 101 
IL2(0) 0.004 957 0.007 270 0.009 400 

E -10,573 721 -11.289801 - 11.422 870 
P 0.996 026 0.972 230 0.052 670 
ILZ(0) 0.009 186 0.005 551 0.002 965 

EL -24.516 590 -25.366 222 -25.800 997 
E L  - 10.488 993 - 1 1.228 643 -11,607 578 
ER -12.046 121 -11.601 218 - 1 1.383 699 
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The P values indicate how the second energy level jumps from right to left as p rises 
through the resonance region. 

The renormalised hypervirial perturbation method (Killingbeck 1987) can easily 
be modified to deal with the case of a harmonic oscillator perturbed by a sum of x3  
and x4 type potentials. We have applied it to the ( p  = 0) potential -14x2+2x4 which, 
when expanded about the right-hand minimum, takes the form 

V =  - ? + 2 8 ~ ~ + 8 ( ; ) ” ~ ~ ~ + 2 ~ ~ .  (18) 

Treating the last two terms as the perturbation, we can ask: to which energy level will 
the perturbation series fit? The function Vin (18) ful ly  describes the potential, including 
the left-hand well, but our unperturbed state based on the right-hand well does not 
have the correct symmetry appropriate to the full perturbed potential. In fact our 
perturbation calculation gave E = -17.3336, which is exactly the average of the even 
and odd parity energies. We conjecture that this result may have some relevance for 
those approaches which treat the Hi ion in terms of a hydrogen atom being perturbed 
by the electrical field of a proton. 

The specimen calculations reported here show that local quantities such as I,!I~(O) 
(or t,h2 at any selected x value) and integrated quantities such as P can be computed 
without the explicit tabulation of J, or the estimation of normalisation integrals. The 
techniques used can be applied to other asymmetric potentials such as the asymmetric 
oscillator potential discussed by Crosignani and Di Porto (1988) .  
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